
Smilart Web API Guide

Table of Contents
Overview. 1

Common protocol description . 1

WebSockets heartbeat. 1

Root Endpoint . 2

Resources Summary. 3

Person Collection . 3

Person . 3

Person Photo Collection . 3

Person Photo . 3

Camera Collection . 5

Camera Info . 5

Camera MJPEG . 5

VCA Service . 5

Photo Booth Service. 5

Verification Service . 5

IPA Service . 6

Adaptive Verification Service . 6

Resources Reference . 7

Person Collection . 7

Person . 10

Person Photo Collection . 14

Person Photo . 15

Camera Collection . 22

Camera Info. 24

Camera MJPEG . 25

VCA Service . 27

Photo Booth Service. 34

Verification Service . 44

IPA Service . 52

Adaptive Verification Service . 58

Overview
Smilart Web API is a set of several API services which provide necessary functions to use Smilart
recognition algorithms when you create your own Web application.

List of services included into Smilart API:

1. Person Service — person management service implements basic operations on persons, such as
adding, retrieving, removing and updating person in Platform database.

2. Camera Service — camera management service implements basic operations on cameras in
Platform.

3. Video Content Analytics Service (VCA Service) — provides access to some events generated by
Platform services, such as frame streams from cameras, face detection results and identification
result.

4. Photo Booth Service — selects best frames from the camera stream, in order to put them into
Platform database to achieve best identification results.

5. Verification Service — implements verification case.

6. Instant Photo Analytics Service — the service for instant photo analysis.

7. Adaptive Verification Service — provides opportunities to manage Adaptive Verification (AV)
service.

Platform receives frames from connected cameras. Each camera can be either physical device or
software emulation, and must implement one of the supported streaming protocols.

All services share common base of persons that used for face recognition.

Common protocol description
Smilart Web API uses HTTP and WebSockets as a transport layer for communication and JSON as a
payload.

WebSockets heartbeat
After the handshake, the server will periodically send ping messages to the client.
When the ping is received, the recipient must send back a pong as soon as possible.
The server use this mechanism to make sure that the client is still alive. It is RECOMMENDED that
client also send pings for checking a server.

A ping or pong is just a regular frame, but it is a control frame.
Pings have an opcode of 0x9, and pongs have an opcode of 0xA.
When you get a ping, send back a pong with the exact same Payload Data as the ping (for pings
and pongs, the max payload length is 125).
You might also get a pong without ever sending a ping; ignore this if it happens.

Most WebSockets libraries already have PING/PONG mechanism.

1

Root Endpoint
By default root endpoint for Smilart Web API is located at /api. The default port is 9999, The default
URL for Person Service, Camera Service, IPA Service: http://<yourInstance>:9999/api and
ws://<yourInstance>:9999/api for other services.
Any Smilart Web API Resource endpoints are relative to these URLs, unless otherwise noted.

2

Resources Summary

Person Collection
For Person Collection Resource details, see the resource representation.

Method HTTP Request Description

ListPersons GET /persons Lists all persons in base.

DeletePersons DELETE /persons Deletes all persons from base.

Person
For Person Resource details, see the resource representation.

Method HTTP Request Description

AddPerson POST /persons Adds new person into base with
auto-generated identifier.

AddPersonWithId PUT /persons/{personId} Adds new person into base with
identifier specified by client.

GetPerson GET /persons/{personId} Retrieves the person from base.

DeletePerson DELETE /persons/{personId} Removes the person from base.

Person Photo Collection
For Person Photo Collection Resource details, see the resource representation.

Method HTTP Request Description

ListPersonPhotos GET /persons/{personId}/photos Lists all photos for the person.

DeletePersonPhotos DELETE /persons/
{personId}/photos

Removes all photos associated
with the person.

Person Photo
For Person Photo Resource details, see the resource representation.

Method HTTP Request Description

AddPersonPhoto POST /persons/
{personId}/photos

Adds photo to the person.

AddPersonPhotoWithId PUT /persons/
{personId}/photos/{photoId}

Adds photo with specified
identifier to the person.

GetPersonPhoto GET /persons/
{personId}/photos/{photoId}

Receives photo from the person.

3

GetPersonPhotoJpeg GET /persons/
{personId}/photos/{photoId}/jp
eg

Receives binary JPEG photo
from the person.

DeletePersonPhoto DELETE /persons/
{personId}/photos/{photoId}

Removes photo from the
person.

4

Camera Collection
For Cameras Resource details, see the resource representation.

Method HTTP Request Description

ListCameras GET /cameras Lists all cameras.

Camera Info
For Camera Info Resource details, see the resource representation.

Method HTTP Request Description

GetCameraInfo GET /camera/{cameraPid} Receives the camera
information from the system.

Camera MJPEG
For Camera MJPEG Resource details, see the resource representation.

Method HTTP Request Description

GetCameraMjpegStream GET /camera/{cameraPid}/mjpeg Starts subscription on the
camera MJPEG stream.

VCA Service
For VCA Service description, see the details.

Method HTTP Request Description

SubscribeToVCAEvents GET /cameras/{cameraPid}/vca Subscribes to the events of VCA
Service.

Photo Booth Service
For Photo Booth Service description, see the details.

Method HTTP Request Description

StartPhotoSelection GET /cameras/
{cameraPid}/photobooth

Starts frames selection from the
camera.

Verification Service
For Verification Service description, see the details.

Method HTTP Request Description

5

Verify GET /cameras/
{cameraPid}/verify

Starts verification process from
the camera.

IPA Service
For IPA Service description, see the details.

Method HTTP Request Description

PhotoAnalysis POST /photo_analysis Correlates image with base.

Adaptive Verification Service
For Adaptive Verification Service description, see the details.

Method HTTP Request Description

GetConfig GET /av/config Gets the service configuration.

SetConfig POST /av/config Sets the service configuration.

RemoveAllPhotos DELETE /av/photos Removes all sampled photos.

RemovePhotosByP
erson

DELETE /av/photos/persons/{personId} Removes all sampled photos of the
person.

RemovePhotosByC
amera

DELETE /av/photos/cameras/{cameraPid} Removes all sampled photos from the
camera for every person.

6

Resources Reference

Person Collection

Overview

Represents collection of persons in base.

Resource Representation

Content-Type: application/vnd.com.smilart.helios.persons+json

JSON array of string identifiers of persons in base.

Methods

ListPersons

Lists all persons in base.

Request

GET /persons

Optional Query Parameters

Parameter
Name

Value Type Default
Value

Description

filter_by_pe
rson_id_subs
tring

string not provided Option for filtering the list of persons by substring in
the person identifier. Case insensetive.

limit integer not provided Option to limit the number of identifiers.

offset integer not provided Option to offset over the specified number of
identifiers.

Request Body

Do not supply a request body with this method.

Response

Persons listed

Status code: 200 OK.
Headers: X-Smilart-TotalPersons
Body: representation of the resource.

Headers

7

Property Name Value
Type

Description

X-Smilart-TotalPersons integer Number of all or filtered persons in the base.

8

DeletePersons

Deletes all persons in base.

Request

DELETE /persons

Request Body

Do not supply a request body with this method.

Response

Persons deleted

Status code: 204 No Content.

9

Person

Overview

Represents person. Person has a (possibly empty) collection of processed photos.

Resource Representation

Content-Type: application/vnd.com.smilart.helios.person+json

{
 "id":string,
 "creationTime":integer,
 "modificationTime":integer
}

Properties

Property
Name

Value Type Description

id string Identifier of the person.

creationTime integer Person creation time.

modification
Time

integer Last person modification time in ms. It is updated on every
modification of any person field, include initial person creation.

Methods

AddPerson

Adds new person into base with auto-generated identifier.

Request

POST /persons

Request Body

Do not supply a request body with this method.

Response

Person added

Status code: 201 Created.
Body: representation of the resource.

10

AddPersonWithId

Adds new person into base with specified identifier.

Request

PUT /persons/{personId}

Path Parameters

Parameter Name Value Type Description

personId string Client-generated identifier of new person. Non empty
string. Max lenght is 50. ASCII symbols with codes [32,
126]. Should be unique for the person.

Request Body

Do not supply a request body with this method.

Response

Person added

Status code: 201 Created.
Body: representation of the resource.

Person with specified identifier already exists

Status code: 409 Conflict.

PersonId validation error

Status code: 400 Bad Request.

11

GetPerson

Gets person from base.

Request

GET /persons/{personId}

Path Parameters

Parameter Name Value Type Description

personId string Identifier of the person.

Request Body

Do not supply a request body with this method.

Response

Person provided

Status code: 200 OK.
Body: representation of the resource.

Person not found

Status code: 404 Not Found.

12

DeletePerson

Deletes person from base.

Request

DELETE /persons/{personId}

Path Parameters

Parameter Name Value Type Description

personId string Identifier of the person.

Request Body

Do not supply a request body with this method.

Response

Person deleted

Status code: 204 No Content.

Person not found

Status code: 404 Not Found.

13

Person Photo Collection

Overview

Represents collection of photos for the person in base.

Resource Representation

Content-Type: application/vnd.com.smilart.helios.photos+json

JSON array of string identifiers of photos for the person in base.

Methods

ListPersonPhotos

Lists photos of the person.

Request

GET /persons/{personId}/photos

Path Parameters

Parameter Name Value Type Description

personId string Identifier of the person.

Request Body

Do not supply a request body with this method.

Response

Photos listed

Status code: 200 OK.
Body: representation of the resource.

Person not found

Status code: 404 Not Found.

14

DeletePersonPhotos

Deletes all photos of the person.

Request

DELETE /persons/{personId}/photos

Path Parameters

Parameter Name Value Type Description

personId string Identifier of the person.

Request Body

Do not supply a request body with this method.

Response

Photos deleted

Status code: 204 No Content.

Person not found

Status code: 404 Not Found.

Person Photo

Overview

Represents photo of the person in base.

Resource Representations

JPEG photo of the person as multipart/form-data

Content-Type: multipart/form-data; boundary={your boundary}

{your boundary}\r\n
Content-Type: image/jpeg\r\n\r\n
{binary jpeg}
{your boundary}\r\n

Meta information about person photo

Content-Type: application/vnd.com.smilart.helios.photo+json

15

{
 "id":string,
 "creationTime":integer,
 "autoSampled":boolean
}

Properties

Property Name Value
Type

Description

id string Identifier of the person’s photo.

creationTime integer Photo creation time in ms.

autoSampled boolean True if this photo was sampled by Adaptive
Verification service during self-learning process, other
false.

Methods

AddPersonPhoto

Adds binary representation of a photo to the person.
Only JPEG images are supported.

Request

POST /persons/{personId}/photos

Path Parameters

Parameter Name Value Type Description

personId string Identifier of the person.

Request Body

Content-Type
multipart/form-data; boundary={your boundary}

Payload

Representation of the resource

Response

Photo added

Status code: 201 Created.
Content-Type: application/vnd.com.smilart.helios.photo+json
Body: representation of the resource.

16

Face not found in the photo

Status code: 422 Unprocessable Entity.
Body: No face.

Payload validation error

Status code: 400 Bad Request. Body: reason.

Person not found

Status code: 404 Not Found.

17

AddPersonPhotoWithId

Adds binary representation of a photo to the person with specified identifier.
Only JPEG images are supported.

Request

PUT /persons/{personId}/photos/{photoId}

Path Parameters

Parameter Name Value Type Description

personId string Identifier of the person.

photoId string Client-generated identifier of new photo. Non empty
string. Max lenght is 50. ASCII symbols with codes [32,
126]. Should be unique for the photo for each person.

Request Body

Content-Type
multipart/form-data; boundary={your boundary}

Payload

Representation of the resource

Response

Photo added

Status code: 201 Created.
Content-Type: application/vnd.com.smilart.helios.photo+json
Body: representation of the resource.

Photo with specified identifier already exists

Status code: 409 Conflict.

Face not found in the photo

Status code: 422 Unprocessable Entity.
Body: No face.

Payload validation error

Status code: 400 Bad Request. Body: reason.

Person not found

Status code: 404 Not Found.

18

GetPersonPhoto

Receives information about photo with specified identifier.

Request

GET /persons/{personId}/photos/{photoId}

Path Parameters

Parameter Name Value Type Description

personId string Identifier of the person.

photoId string Identifier of the photo.

Request Body

Do not supply a request body with this method.

Response

Photo received

Status code: 200 OK.
Content-Type: application/vnd.com.smilart.helios.photo+json
Body: representation of the resource.

Photo or person not found

Status code: 404 Not Found.

19

GetPersonPhotoJpeg

Receives binary JPEG photo from the person.

Request

GET /persons/{personId}/photos/{photoId}/jpeg

Path Parameters

Parameter Name Value Type Description

personId string Identifier of the person.

photoId string Identifier of the photo.

Request Body

Do not supply a request body with this method.

Response

Photo received

Status code: 200 OK.
Content-Type: image/jpeg.
Body: binary representation of the photo for the person.

Photo or person not found

Status code: 404 Not Found.

20

DeletePersonPhoto

Deletes photo of the person with specified identifier.

Request

DELETE /persons/{personId}/photos/{photoId}

Path Parameters

Parameter Name Value Type Description

personId string Identifier of the person.

photoId string Identifier of the photo.

Request Body

Do not supply a request body with this method.

Response

Photo deleted

Status code: 204 No Content.

Photo or person not found

Status code: 404 Not Found.

21

Camera Collection

Overview

Represents collection of cameras in system.

Resource Representation

Cameras

Content-Type: application/vnd.com.smilart.helios.cameras+json

JSON array with string identifiers of cameras in system.

CamerasInfo

Content-Type: application/vnd.com.smilart.helios.cameras_info+json

JSON array with camera representation:

[
 {
 "id":string,
 "active":boolean,
 "running":boolean,
 },
 ...
]

Methods

ListCameras

Lists all cameras in system.

Request

GET /cameras

Request Headers

Header Name Value Type Description

22

Accept string Media type(s) that is/are acceptable for the response.
Acceptable types are:

• application/vnd.com.smilart.helios.cameras+json

• application/vnd.com.smilart.helios.cameras_info+js
on.

If not provided
application/vnd.com.smilart.helios.cameras+json is
used.

Request Body

Do not supply a request body with this method.

Response

Cameras listed

Status code: 200 OK.
Body: representation of the resource.

Not Acceptable

Status code: 406 Not Acceptable

23

Camera Info

Overview

Represents camera info.

Resource Representation

Content-Type: application/vnd.com.smilart.helios.camera_info+json

{
 "id":string,
 "active":boolean,
 "running":boolean,
}

Properties

Property
Name

Value Type Description

id string Identifier of the camera.

active boolean Whether the camera was activated (started) in the system, typically
intentionally by the system administrator.

running boolean True if camera frames are available for processing, otherwise false.

Methods

GetCameraInfo

Gets the camera information from the system.

Request

GET /cameras/{cameraPid}

Path Parameters

Parameter Name Value Type Description

cameraPid string Identifier of the camera.

Request Body

Do not supply a request body with this method.

Response

Camera Info provided

24

Status code: 200 OK.
Body: representation of the resource.

Camera not found

Status code: 404 Not Found.

Camera MJPEG

Overview

Represents MJPEG Stream from cameras.

Resource Representation

M-JPEG over HTTP type.

Methods

GetCameraMjpegStream

Gets a stream from the camera.

Request

GET /cameras/{cameraPid}/mjpeg

Path Parameters

Parameter Name Value Type Description

cameraPid string Identifier of the camera.

Optional Query Parameters

Parameter Name Value Type Description

resolution enumeration Resolutions of the frames. Acceptable types are: small,
medium, large, original. If not provided original is used.

max_fps integer Rate limit for incoming messages per seconds.
Positive integer. If not provided produces all incoming
frames.

Request Body

Do not supply a request body with this method.

Response

Camera MJPEG Stream provided

Status code: 200 OK.

25

https://en.wikipedia.org/wiki/Motion_JPEG

Headers: multipart/x-mixed-replace; boundary=<some boundary>
Body: representation of the resource.

Incorrect request parameters

Status code: 400 Bad Request.

Camera not found

Status code: 404 Not Found.

26

VCA Service

Overview

VCA Service provides access to events generated by Platform in the process of handling frames.
Subscription to video analytics events is implemented via WebSockets.
To subscribe client should open WebSocket with header Sec-WebSocket-Protocol: vca.
Open WebSocket will receive messages with the result of the analysis of the frame from the selected
camera.
The message is an aggregated event (frame + detection + correlation + identification) in JSON.


There is an aggregation timeout for event and if the system does not collect all the
information during this time some information in the aggregated event may be
missing.


A subscription for more then one type of event will add a delay (about the
aggregation timeout value) to the sending.

In the subscription request you can specify what type of information with analysis of the frame you
want to receive and how often you want to receive messages.
If an error occurs during validation of specified options in the beginning or during the process,
WebSocket would be closed by the server with the corresponding code.


The server will only close connection if the client terminated subscription by
closing WebSocket.



Correlations are primarily debugging information that can be completely correct
interpreted only by the vendor’s specialists and reflects the features of the
currently used face recognition algorithm that may change in the future.
Therefore, you SHOULD NOT make any conclusions based on the received
coefficients, except for getting the top of the most similar persons in the database
according to the current face recognition algorithm.

Request

GET /cameras/{cameraPid}/vca

Path Parameters

Parameter Name Value Type Description

cameraPid string Identifier of the camera.

27

Optional Query Parameters

Parameter
Name

Value Type Default
Value

Description

subscribe string "frame+detec
t+identifica
tion"

Defines what types of events should be sent.
Should not be empty.
Represents composition of types joined by "+".
Acceptable types are:

• "frame": subscribe to frames.

• "detect": subscribe to detects.

• "correlation": subscribe to correlations.

• "identification": subscribe to identifications.

required string not provided Defines what types of events are required and should
always be presented in aggregated message. These set
of types should be subset of subscribe parameters set.
Represents composition of types joined by "+".
Acceptable types are:

• "frame": subscription to frames.

• "detect": subscription to detects.

• "correlation": subscription to correlations.

• "identification": subscription to identifications.

frame_size string "medium" Size of frames from camera.
Picture from the camera will be scaled to fit built-in
dimensions.
It converts so that the proportions do not change and
do not become larger.
Acceptable values are:

• "small": 320x240 pixels.

• "medium": 800x600 pixels.

• "large": 1400x1050 pixels.

• "original": original frame size.

max_mps integer not provided Rate limit for incoming messages per seconds.
Positive integer. If not provided produces all incoming
events. If set over 100 reduced to 100.

28

detect_face string "none" Type of images to send.
Acceptable values are:

• "none": do not send detected faces.

• "jpeg": send detected faces as jpeg images.

correlation_
face

string "none" Type of images to send.
Acceptable values are:

• "none": do not send correlated faces.

• "jpeg": send correlated faces as jpeg images.

identificati
on_face

string "none" Type of images to send.
Acceptable values are:

• "none": do not send identified faces.

• "jpeg": send identified faces as jpeg images.

correlation_
max_persons

integer 10 Maximum number of matches in correlation event.
Positive integer.

identificati
on_throttle

integer not provided Minimum time interval in seconds between
identification messages of the same person. Positive
integer.

29

Communication Protocol

Server Send Message Representation

Below is a scheme of an aggregated event in JSON.
Depending on the settings and system performance, some objects may be missing.

{
 "camera": string,
 "sequence": integer,
 "timestamp": integer,
 "frame": {
 "meta": {
 "width": integer,
 "height": integer,
 },
 "image": {
 "contentType": "image/jpeg",
 "data": string
 }
 },
 "detects": {
 "<detect id>": {
 "id": <detect id>,
 "top": integer,
 "left": integer,
 "right": integer,
 "bottom": integer,
 "leftEyeTop": integer,
 "leftEyeLeft": integer,
 "rightEyeTop": integer,
 "rightEyeLeft": integer,
 "detectFace": {
 "contentType": "image/jpeg",
 "data": string
 }
 }
 },
 "correlations": {
 "<detect id>": {
 "id":<detect id>,
 "matches": [
 {
 "correlation": float,
 "personId": string,
 "photoId": string,
 "databaseFace": {
 "contentType": "image/jpeg",
 "data": string
 }

30

 }
]
 }
 },
 "identifications": {
 <detect id>: {
 "id": <detect id>,
 "correlation": float,
 "threshold": float,
 "personId": string,
 "photoId": string,
 "databaseFace": {
 "contentType": "image/jpeg",
 "data": string
 }
 }
 }
}

Properties

Property Name Value
Type

Description

camera string Pid of camera.

sequence integer Sequential number of the message.

timestamp integer Server-side timestamp (with ms resolution) of the
message.

frame nested
object

Frame info if requested by client.

frame.meta nested
object

Frame meta.

frame.meta.width integer Width of the image of frame.

frame.meta.height integer Height of the image of frame.

frame.image nested
object

Image of the frame.

frame.image.contentType string Content type of payload. Only "image/jpeg" supported.

frame.image.data string Base64 encoded binary content of the image.

detects nested
object

Information about detects. Present if requested by
client.

detects.<detect id> nested
object

Information about detect with identifier <detect id>.

detects.<detect id>.id string Detect id = <detect id>.

detects.<detect id>.top integer Coordinate of top horizontal line of face rectangle.

detects.<detect id>.bottom integer Coordinate of bottom horizontal line of face rectangle.

detects.<detect id>.left integer Coordinate of left vertical line of face rectangle.

31

detects.<detect id>.right integer Coordinate of right vertical line of face rectangle.

detects.<detect id>.leftEyeTop integer Top coordinate of face left eye. May be missing.

detects.<detect
id>.leftEyeLeft

integer Left coordinate of face left eye. May be missing.

detects.<detect
id>.rightEyeTop

integer Top coordinate of face right eye. May be missing.

detects.<detect
id>.rightEyeLeft

integer Left coordinate of face right eye. May be missing.

detects.<detect id>.detectFace nested
object

Face from frame. Present if requested by client.

detects.<detect
id>.detectFace.contentType

string Content type of payload. Only "image/jpeg" supported.

detects.<detect
id>.detectFace.data

string Base64 encoded binary content of the image.

correlations nested
object

Information about correlations. Present if requested
by client.

correlations.<detect id> nested
object

Information about correlation for detect with
identifier <detect id>.

correlations.<detect id>.id string Detect identifier = <detect id>.

correlations.<detect
id>.matches

array List of matches for correlation.

correlations.<detect
id>.matches[].correlation

float Correlation coefficient between detected face and
photo from base.

correlations.<detect
id>.matches[].personId

string Person id correlated with.

correlations.<detect
id>.matches[].photoId

string Photo id from base correlated with.

correlations.<detect
id>.matches[].databaseFace

nested
object

Face image from base for correlated photo. Present if
requested by client.

correlations.<detect
id>.matches[].databaseFace.con
tentType

string Content type of payload. Only "image/jpeg" supported.

correlations.<detect
id>.matches[].databaseFace.dat
a

string Base64 encoded binary content of the image.

identifications nested
object

Information about identifications. Present if
requested by client.

identifications.<detect id> nested
object

Information about identification for detect with
identifier <detect id>.

identifications.<detect id>.id string Detect id = <detect id>.

identifications.<detect
id>.correlation

float Correlation coefficient between detected face and
photo from base.

identifications.<detect
id>.threshold

float Current system threshold for correlation coefficient.
Person is identified if the correlation is not less than
the threshold.

identifications.<detect
id>.personId

string Person id identified with.

32

identifications.<detect
id>.photoId

string Photo id from base identified with.

identifications.<detect
id>.databaseFace

nested
object

Face image from base for identified photo. Present if
requested by client.

identifications.<detect
id>.databaseFace.contentType

string Content type of payload. Only "image/jpeg" supported.

identifications.<detect
id>.databaseFace.data

string Base64 encoded binary content of the image.

Errors Handling

The table below shows error codes and descriptions that are returned if the emergency shutdown
of the WebSocket on server side occurs.
Note that closing message is limited by 125 characters.

Close Event content

Code Full-text Reason
Description

Description Proposed client’s actions

1001 "Going Away" Indicates that an endpoint is "going
away", such as a server going down
for some internal reason.

Contact tech support.

1011 "Internal Server
Error"

Indicates that a server is terminating
the connection because it
encountered an unexpected
condition that prevented it from
fulfilling the request.

Contact to tech support.

4000 "Unknown query
entry:
{key}={value}"

Optional query parameter name
{key} and its value {value} was not
understood by the server.

Check the parameter’s
compliance with the service
protocol.

4001 "Unknown camera:
{cameraPid}"

Process couldn’t be started due to
absence of camera with identifier
{cameraPid}.

Check availability of the
specified camera.

33

Photo Booth Service

Overview

Service provides the way to get optimal set of faces for person who stands in front of the camera to
enroll the person using these photos.
To start process client should open WebSocket with header Sec-WebSocket-Protocol: photobooth.

There are several steps to get the set of faces:

• The person to enroll should stands in front of the camera.

• The process of building the set of faces starts via WebSocket request.

• The person by moving his or her head to different poses provides to the service different images
of his or her face.

• The service accepts the images depending on its sampler scheme.

• When all necessary images have been collected or operation timeout occurs, the service stops
the sampling process and creates the optimal set of faces, which will be returned from the
service.

Sampling process is finished when area of interest is full.
The area of interest consists of one or several groups, each of which indicates a certain head pose
or face position and is called named position or named group. The area of interest is considered
full, when each named group included in it is full.
A group of head pose is considered full when it collects enough detects where face relates to the
group. Implementation of the service reserves the right to define strategy of group of head pose
progress estimation.

Client will receive JSON messages about the start, progress, detects and result of the process for the
selected camera through the opened WebSocket.


There is a timeout to receive and convert an image for detect message and if the
system does not succeed in the specified time, the message will not be sent.

In the subscription request, you can specify what information you want to receive and how often to
receive messages.
There is a timeout for sampling process (20 seconds by default) after which partial completed result
will be send.


Clients can interfere with each other if they try to run the process from the same
camera at the same time.

If an error occurs during validation of options, start or during process, the WebSocket is closed by
the server with the corresponding code.

34


The subscription is terminated when the client closes the WebSocket (the server
does not close the WebSocket unless an error occurs even after the sampling
process finished).

35

Request

GET /cameras/{cameraPid}/photobooth

Path Parameters

Parameter Name Value Type Description

cameraPid string Identifier of the camera.

Optional Query Parameters

Parameter
Name

Value Type Default
Value

Description

subscribe string "detect" Defines what types of events should be sent besides
sampling result.
Represents composition of types joined by "+".
Acceptable types are:

• "detect": subscribe to detects events.

• "progress": subscribe to progress events.

To receive messages only about sampling result use
empty string as a parameter value.

detect_face string "none" Type of images to send.
Acceptable values are:

• "none": do not send detected faces.

• "jpeg": send detected faces as jpeg images.

36

Communication Protocol

Detected Face Named Positions

Named position indicates a certain head pose or face position.

• "leftwardTurn": person looks to the left.

• "leftwardUpwardTurn": person looks to the left and up.

• "leftwardDownwardTurn": person looks to the left and down.

• "forwardTurn": person looks straight forward.

• "forwardUpwardTurn": person looks up.

• "forwardDownwardTurn": person looks down.

• "rightwardTurn": person looks to the right.

• "rightwardUpwardTurn": person looks to the right and up.

• "rightwardDownwardTurn": person looks to the right and down.

• "outsideLeftwardTurn": person looks to the left too far from forward position.

• "outsideRightwardTurn": person looks to the right too far from forward position.

• "outsideUpwardTurn": person looks up too far from forward position.

• "outsideDownwardTurn": person looks down too far from forward position.

Areas Of Interest

Set of face positions taken into account during the sampling process:

• "cross": 5 positions ("forwardTurn", "leftwardTurn", "rightwardTurn", "forwardUpwardTurn",
"forwardDownwardTurn").

• "horizontal": 3 positions ("forwardTurn", "leftwardTurn", "rightwardTurn").

• "forwardTurn": only forward position ("forwardTurn").

• "allInnerPoses": all 9 positions.

37

Server Send Message Representation

All messages from the service can be divided into 3 types:

• initial message

• info message

• final message

Initial message

{
 "camera": string,
 "sequence": integer,
 "timestamp": integer,
 "startOptions": {
 "timeLimitSeconds": integer,
 "scheme": {
 "grid3x3": {
 "areaOfInterest": string
 }
 }
 }
}

Info messages

38

{
 "camera": string,
 "sequence": integer,
 "timestamp": integer,
 "detects": {
 "<detect id>": {
 "id": <detect id>,
 "top": integer,
 "left": integer,
 "right": integer,
 "bottom": integer,
 "leftEyeTop": integer,
 "leftEyeLeft": integer,
 "rightEyeTop": integer,
 "rightEyeLeft": integer,
 "headPose": string,
 "detectFace": {
 "contentType": "image/jpeg",
 "data": string
 }
 }
 }
}

{
 "camera": string,
 "sequence": integer,
 "timestamp": integer,
 "progress": {
 "progressPercentage": integer,
 "perPoseStatistics":
 [{
 "namedPosition": string,
 "collectedPercentage": integer
 }]
 }
}

Final message

39

{
 "camera": string,
 "sequence": integer,
 "timestamp": integer,
 "done": {
 "progressPercentage": integer,
 "photos": [{
 "contentType": string,
 "data": string
 }],
 "description": string
 }
}

Properties of messages

Properties

Property Name Value
Type

Description

camera string Pid of camera.

sequence integer Sequential number of the message.

timestamp integer Server-side timestamp (with ms resolution) of the
message.

startOptions nested
object

Initial information about sampling process. Sent only
once in the beginning.

startOptions.timeLimitSeconds integer Duration of sampling process in seconds.

startOptions.scheme nested
object

Sampling scheme.

startOptions.scheme.grid3x3 nested
object

Type of scheme. Only "grid3x3" supported.

startOptions.scheme.grid3x3.ar
eaOfInterest

string Type of area where a face should be detected. One of
area types.

detects nested
object

Information about detects. Present if requested by
client and the system succeed to aggregate detect
information.

detects.<detect id> nested
object

Information about detect with identifier <detect id>.

detects.<detect id>.id string Detect id = <detect id>.

detects.<detect id>.top integer Coordinate of top horizontal line of face rectangle.

detects.<detect id>.bottom integer Coordinate of bottom horizontal line of face rectangle.

detects.<detect id>.left integer Coordinate of left vertical line of face rectangle.

detects.<detect id>.right integer Coordinate of right vertical line of face rectangle.

detects.<detect id>.leftEyeTop integer Top coordinate of face left eye. May be missing.

40

detects.<detect
id>.leftEyeLeft

integer Left coordinate of face left eye. May be missing.

detects.<detect
id>.rightEyeTop

integer Top coordinate of face right eye. May be missing.

detects.<detect
id>.rightEyeLeft

integer Left coordinate of face right eye. May be missing.

detects.<detect id>.headPose string Detected head pose. One of named positions.

detects.<detect id>.detectFace nested
object

Face from frame. Present if requested by client.

detects.<detect
id>.detectFace.contentType

string Content type of payload. Only "image/jpeg" supported.

detects.<detect
id>.detectFace.data

string Base64 encoded binary content of the image.

progress nested
object

Information about progress. Present if requested by
client.

progress.progressPercentage integer Information about progress. It grows from 0 to 100
and corresponds to the proportion of frames with a
face received from the camera and taken for
sampling, from the number of frames with a face
required for sampling process.

progress.perPoseStatistics array Progress of filling the pose with frames.

progress.perPoseStatistics[].n
amedPosition

string Named head pose. One of named positions.

progress.perPoseStatistics[].c
ollectedPercentage

integer Information about progress for the head pose. It
grows from 0 to 100 and corresponds to the
proportion of frames with a face received from the
camera and taken for sampling, from the number of
frames with a face required for sampling process in
the current head pose.

done nested
object

Information about sampling process results. Send
only once on finish.

done.progressPercentage integer Information about progress. It grows from 0 to 100
and corresponds to the proportion of frames with a
face received from the camera and taken for
sampling, from the number of frames with a face
required for sampling process.

done.photos array Optimal list of faces selected during training.

done.photos[].contentType string Content type of payload. Only "image/jpeg" provided.

done.photos[].data string Base64 encoded binary content of the image.

41

done.description string Describes result status. One of:

• "complete": process fully completed.

• "timeLimitExceeded": process partially completed
and stopped due to exceeding time limit.

• "terminated": process partially completed and
stopped due to termination request.

42

Errors Handling

The table below shows error codes and descriptions that are returned while emergency shutdown
of the WebSockets by server side.
Note that closing message is limited by 125 characters.

Close Event content

Code Full-text Reason
Description

Description Proposed client’s actions

1001 "Going Away" Indicates that an endpoint is "going
away", such as a server going down
for some internal reason.

Contact to tech support.

1011 "Internal Server
Error"

Indicates that a server is terminating
the connection because it
encountered an unexpected
condition that prevented it from
fulfilling the request.

Contact to tech support.

4000 "Unknown query
entry:
{key}={value}"

Optional query parameter name
{key} and its value {value} was not
understood by the server.

Check the parameter’s
compliance with the service
protocol.

4001 "Unknown camera:
{cameraPid}"

Process couldn’t be started due to
absence of camera with identifier
{cameraPid}.

Check availability of the
specified camera.

4002 "Process already
started from:
{cameraPid}"

Process couldn’t be started due to
sampling process already started for
camera with identifier {cameraPid}.

Terminate last sampling
process or wait for some
time.

43

Verification Service

Overview

Service implements verification scenario: is the person who stands in front of the camera a person
from base? Subscription to verification events is carried out via WebSockets.
To subscribe client should open WebSocket with header Sec-WebSocket-Protocol: verification.
The opened WebSocket will receive messages about the result of the analysis of the frame from the
selected camera.
The message is an aggregated event (frame + detection + correlation + successfull verification) in
JSON.


There is an aggregation timeout for event and if the system does not collect an
information during the specified time, then some information in the aggregated
event may be missing.


A subscription for more then only successfull verification event will add a delay
(about the aggregation timeout value) to the sending.

In the subscription request, you can specify what information you want to receive, how often to
receive messages.


Clients can interfere with each other if they try to run the process from the same
camera at the same time.

If an error occurs during validation of options, start or during process, the WebSocket is closed by
the server with the corresponding code.


The subscription is terminated when the client closes the WebSocket (the server
does not close the WebSocket on successful workflow even after the verification
finished).


When starting verification, the client does not specify in advance the maximum
verification time. The verification process continues for as long as the client keeps
the connection open (except as described above when the process is stopped by the
server for other reasons).



Correlations are primarily debugging information that can be completely correct
interpreted only by the vendor’s specialists and reflects the features of the
currently used face recognition algorithm that may change in the future.
Therefore, you SHOULD NOT make any conclusions based on the received
coefficients, except for getting the top of the most similar photos in the database
according to the current face recognition algorithm.

44

Request

GET /cameras/{cameraPid}/verify

Path Parameters

Parameter Name Value Type Description

cameraPid string Identifier of the camera.

Required Query Parameters

Parameter Name Value Type Description

person_id string Identifier of the person to match.

45

Optional Query Parameters

Parameter
Name

Value Type Default
Value

Description

subscribe string "frame+detec
t"

Defines what types of events should be sent besides
successfull verification event.

Represents composition of types joined by "+".
Acceptable types are:

• "frame": subscription to frames.

• "detect": subscription to detects.

• "correlation": subscription to correlations.

To receive messages only about successfull verification
use empty string as a parameter value.

frame_size string "medium" Size of frames from camera.
Picture from the camera will be scaled to fit built-in
dimensions.
It converts so that the proportions do not change and
do not become larger.
Acceptable values are:

• "small": 320x240 pixels.

• "medium": 800x600 pixels.

• "large": 1400x1050 pixels.

• "original": original frame size.

max_mps integer not provided Rate limit for incoming messages per seconds.
Positive integer. If not provided produces all incoming
events. If set over 100 reduced to 100.

detect_face string "none" Type of images to send.
Acceptable values are:

• "none": do not send detected faces.

• "jpeg": send detected faces as jpeg images.

correlation_
face

string "none" Type of images to send.
Acceptable values are:

• "none": do not send detected faces.

• "jpeg": send detected faces as jpeg images.

46

threshold_na
me

string not provided Name of the predefined verification threshold in the
vendor implementation. Case insensetive. If not
set — verification process will be started with threshold
selected by implementation. List of available names
should be provided by the vendor implementation.

47

Communication Protocol

Server Send Message Representation

Below is a scheme of an aggregated event in JSON.
Depending on the settings and system performance, some objects may be missing.

{
 "camera": string,
 "sequence": integer,
 "timestamp": integer,
 "frame": {
 "meta": {
 "width": integer,
 "height": integer
 },
 "image": {
 "contentType": "image/jpeg",
 "data": string
 }
 },
 "detects": {
 "<detect id>": {
 "id": <detect id>,
 "top": integer,
 "left": integer,
 "right": integer,
 "bottom": integer,
 "leftEyeTop": integer,
 "leftEyeLeft": integer,
 "rightEyeTop": integer,
 "rightEyeLeft": integer,
 "detectFace": {
 "contentType": "image/jpeg",
 "data": string
 }
 }
 },
 "correlations": {
 "<detect id>": {
 "id": <detect id>,
 "matches": [
 {
 "correlation": float,
 "personId": string,
 "photoId": string,
 "databaseFace": {
 "contentType": "image/jpeg",
 "data": string
 }

48

 }
]
 }
 },
 "terminated": {},
 "verified": {
 "id": <detect id>,
 "correlation": float,
 "threshold": float,
 "personId": float,
 "photoId": string
 }
}

Properties

Property Name Value
Type

Description

camera string Pid of camera.

sequence integer Sequential number of the message.

timestamp integer Server-side timestamp (with ms resolution) of the
message.

frame nested
object

Frame info if requested by client.

frame.meta nested
object

Frame meta.

frame.meta.width integer Width of the image of frame.

frame.meta.height integer Height of the image of frame.

frame.image nested
object

Image of the frame.

frame.image.contentType string Content type of payload. Only "image/jpeg" provided.

frame.image.data string Base64 encoded binary content of the image.

detects nested
object

Information about detects. Presents if requested by
client.

detects.<detect id> nested
object

Information about detect with identifier <detect id>.

detects.<detect id>.id string Detect id = <detect id>.

detects.<detect id>.top integer Coordinate of top horizontal line of face rectangle.

detects.<detect id>.bottom integer Coordinate of bottom horizontal line of face rectangle.

detects.<detect id>.left integer Coordinate of left vertical line of face rectangle.

detects.<detect id>.right integer Coordinate of right vertical line of face rectangle.

detects.<detect id>.leftEyeTop integer Top coordinate of face left eye. May be missing.

detects.<detect
id>.leftEyeLeft

integer Left coordinate of face left eye. May be missing.

49

detects.<detect
id>.rightEyeTop

integer Top coordinate of face right eye. May be missing.

detects.<detect
id>.rightEyeLeft

integer Left coordinate of face right eye. May be missing.

detects.<detect id>.detectFace nested
object

Face from frame. Presents if requested by client.

detects.<detect
id>.detectFace.contentType

string Content type of payload. Only "image/jpeg" provided.

detects.<detect
id>.detectFace.data

string Base64 encoded binary content of the image.

correlations nested
object

Information about correlations. Presents if requested
by client.

correlations.<detect id> nested
object

Information about correlation for detect with
identifier <detect id>.

correlations.<detect id>.id string Detect identifier = <detect id>.

correlations.<detect
id>.matches

array List of matches for correlation.

correlations.<detect
id>.matches[].correlation

float Correlation coefficient between detected face and
photo from base.

correlations.<detect
id>.matches[].personId

string Person id correlated with.

correlations.<detect
id>.matches[].photoId

string Photo id from base correlated with.

correlations.<detect
id>.matches[].databaseFace

nested
object

Face image from base for correlated photo. Presents if
requested by client.

correlations.<detect
id>.matches[].databaseFace.con
tentType

string Content type of payload. Only "image/jpeg" provided.

correlations.<detect
id>.matches[].databaseFace.dat
a

string Base64 encoded binary content of the image.

terminated nested
object

Indicates that the process was terminated by another
start request with the same camera pid. Send only
once.

verified nested
object

Information about verification. Send only once on
finish.

verified.id string Detect identifier = <detect id>.

verified.correlation float Correlation coefficient between detected face and
photo from base.

verified.threshold float Current system threshold for correlation coefficient.
Person is verified if the correlation is not less than the
threshold.

verified.personId string Person id identified with.

verified.photoId string Photo id from base identified with.

50

Errors Handling

The table below shows error codes and descriptions that are returned if the emergency shutdown
of the WebSocket on server side occurs.
Note that there is a limitation on the size of the message when closing WebSockets (125 characters).

Close Event content

Code Full-text Reason
Description

Description Proposed client’s actions

1001 "Going Away" Indicates that an endpoint is "going
away", such as a server going down
for some internal reason.

Contact to tech support.

1011 "Internal Server
Error"

Indicates that a server is terminating
the connection because it
encountered an unexpected
condition that prevented it from
fulfilling the request.

Contact to tech support.

4000 "Unknown query
entry:
{key}={value}"

Optional query parameter name
{key} and its value {value} was not
understood by the server.

Check the parameter’s
compliance with the service
protocol.

4001 "Unknown camera:
{cameraPid}"

Process couldn’t be started due to
absence of camera with identifier
{cameraPid}.

Check availability of the
specified camera.

4002 "Unknown person:
{personId}"

Process couldn’t be started due to
absence of person with identifier
{personId}.

Check existence of the
specified person in base.

4003 "Unknown threshold
name:
{threshold_name}"

Process couldn’t be started due to
absence of threshold named
{threshold_name}.

Check the correctness of the
threshold name.

51

IPA Service

Overview

Instant Photo Analytics (IPA) Service provides capability to analyze an image and generate analysis
report.
Current supported content type of binary representation of a photo is "image/jpeg" only.

Methods

PhotoAnalysis

Correlates image with base and generate analysis report.

Request

POST /photo_analysis

Optional Query Parameters

Parameter
Name

Value Type Default
Value

Description

operation string "detect+iden
tification"

Defines what types of events should be sent.
Should not be empty.
Represents composition of types joined by "+".
Acceptable types are:

• "detect": receive detect information.

• "correlation": receive correlation information.

• "identification": receive identification
information.

detect_face string "none" Type of images to send.
Acceptable values are:

• "none": do not send detected faces.

• "jpeg": send detected faces as jpeg images.

correlation_
face

string "none" Type of images to send.
Acceptable values are:

• "none": do not send correlated faces.

• "jpeg": send correlated faces as jpeg images.

52

identificati
on_face

string "none" Type of images to send.
Acceptable values are:

• "none": do not send identified faces.

• "jpeg": send identified faces as jpeg images.

max_persons integer 10 Maximum number of matches in correlation event.
Positive integer.

max_faces integer not provided Maximum number of faces in detect event. Positive
integer.

Request Body

Content-Type
multipart/form-data; boundary={your boundary}

Payload

Binary

Success Response

Status code
200 OK

Content-Type
application/vnd.com.smilart.helios.ipa.result+json

Body

53

{
 "faces":[{
 "detect":{
 "face":{
 "top": integer,
 "left": integer,
 "right": integer,
 "bottom": integer,
 "leftEyeTop": integer,
 "leftEyeLeft": integer,
 "rightEyeTop": integer,
 "rightEyeLeft": integer
 },
 "cutting": {
 "top": integer,
 "left": integer,
 "right": integer,
 "bottom": integer,
 "leftEyeTop": integer,
 "leftEyeLeft": integer,
 "rightEyeTop": integer,
 "rightEyeLeft": integer,
 "detectedFace": {
 "contentType": "image/jpeg",
 "data": string
 }
 }
 },
 "correlations":[{
 "correlation": float,
 "personId": string,
 "photoId": string,
 "databaseFace": {
 "contentType": "image/jpeg",
 "data": string
 }
 }],
 "identification":{
 "threshold": float,
 "correlation": float,
 "personId": string,
 "photoId": string,
 "databaseFace": {
 "contentType": "image/jpeg",
 "data": string
 }
 }
 }]
}

54

Properties

Property Name Value
Type

Description

faces array List of information on found faces sorted by face size
in descending order.

faces[].detect nested
object

Information about face detect. Presents when query
parameter operation contains detect and a face was
found.

faces[].detect.face nested
object

Information about a face at the original image.

faces[].detect.face.top integer Coordinate of top horizontal line of face rectangle.

faces[].detect.face.bottom integer Coordinate of bottom horizontal line of face rectangle.

faces[].detect.face.left integer Coordinate of left vertical line of face rectangle.

faces[].detect.face.right integer Coordinate of right vertical line of face rectangle.

faces[].detect.face.leftEyeTop integer Top coordinate of face left eye. May be missing.

faces[].detect.face.leftEyeLef
t

integer Left coordinate of face left eye. May be missing.

faces[].detect.face.rightEyeTo
p

integer Top coordinate of face right eye. May be missing.

faces[].detect.face.rightEyeLe
ft

integer Left coordinate of face right eye. May be missing.

faces[].detect.cutting nested
object

Information about cut face. Presents when query
parameter detect_face is jpeg.

faces[].detect.cutting.top integer Coordinate of top horizontal line of cut face rectangle.

faces[].detect.cutting.bottom integer Coordinate of bottom horizontal line of cut face
rectangle.

faces[].detect.cutting.left integer Coordinate of left vertical line of cut face rectangle.

faces[].detect.cutting.right integer Coordinate of right vertical line of cut face rectangle.

faces[].detect.cutting.leftEye
Top

integer Top coordinate of cut face left eye. May be missing.

faces[].detect.cutting.leftEye
Left

integer Left coordinate of cut face left eye. May be missing.

faces[].detect.cutting.rightEy
eTop

integer Top coordinate of cut face right eye. May be missing.

faces[].detect.cutting.rightEy
eLeft

integer Left coordinate of cut face right eye. May be missing.

faces[].detect.cutting.detecte
dFace

nested
object

Information about cut face image.

faces[].detect.cutting.detecte
dFace.contentType

string Content type of payload. Only "image/jpeg" provided.

faces[].detect.cutting.detecte
dFace.data

string Base64 encoded binary content of the image.

faces[].correlations array Information about correlations. Presents when query
parameter operation contains correlation and a face
was found.

55

faces[].correlations[].correla
tion

float Correlation coefficient between detected face and
photo from base.

faces[].correlations[].personI
d

string Person identifier correlated with.

faces[].correlations[].photoId string Photo identifier from base correlated with.

faces[].correlations[].databas
eFace

nested
object

Face image from base for correlated photo. Presents
when query parameter correlation_face is jpeg

faces[].correlations[].databas
eFace.contentType

string Content type of payload. Only "image/jpeg" provided.

faces[].correlations[].databas
eFace.data

string Base64 encoded binary content of the image.

faces[].identification nested
object

Information about identification. Presents when
query parameter operation contains identification
and a face was found.

faces[].identification.thresho
ld

float Current system threshold for correlation coefficient.
Person is identified if the correlation is not less than
the threshold. Always presents.

faces[].identification.correla
tion

float Correlation coefficient between detected face and
photo from base. Presents when a person was
identified.

faces[].identification.personI
d

string Person identifier identified with. Presents when a
person was identified.

faces[].identification.photoId string Photo identifier from base identified with. Presents
when a person was identified.

faces[].identification.databas
eFace

nested
object

Face image from base for identified photo. Presents
when a person was identified and query parameter
identified_face is jpeg

faces[].identification.databas
eFace.contentType

string Content type of payload. Only "image/jpeg" provided.

faces[].identification.databas
eFace.data

string Base64 encoded binary content of the image.

Error Responses

Incorrect request parameters

Status code: 400 Bad Request.

Request timeout

Status code: 408 Request Timeout.

Image file is too large

Status code: 413 Payload Too Large.

Unsupported image type

Status code: 422 Unprocessable Entity.

Service is overloaded

56

Status code: 429 Too Many Requests.

57

Adaptive Verification Service

Overview

Adaptive Verification (AV) provides the way to improve the user experience in verification process
by populating person base by sampled photos during successful verification from cameras and
adjustment of verification thresholds.

Side effects on other services

Impact on Person Management service

Being activated, AV service can modify list of person photos (add and delete photos), but it can
delete only those photos which were added by this service (sampled photos). This service will
not delete any person’s photos, added by another service (e.g. Person Management service).

All sampled photos will be accessible in Person Management service with special flag indicating
whether the photo was added (sampled) by AV service or not.

Being deactivated this service does not delete sampled photos. Client can get rid of sampled photos
via explicit remove requests at any moment.

Impact on Verification service

Being activated AV service will change thresholds for verification requests and provide additional
person photos for verification.

Impact on other services

Other services will not take into account sampled photos and will not change their behavior
because of the activity of AV service.

Methods

GetConfig

Gets the service configuration.

Request

GET /av/config

Request Body

Do not supply a request body with this method.

Success Response

58

Status code
200 OK

Content-Type
application/vnd.com.smilart.helios.av.config+json

Body

{
 "active": boolean
}

Properties

Property
Name

Value Type Description

active boolean Service activity status.

Error Responses

Request timeout

Status code: 408 Request Timeout.

Service is overloaded

Status code: 429 Too Many Requests.

59

SetConfig

Sets the service configuration.

Request

POST /av/config

Request Body

Content-Type
application/vnd.com.smilart.helios.av.config+json

Payload

JSON

{
 "active": boolean
}

Properties

Property
Name

Required Value
Type

Description

active true boolean Desired service activity status.True if service should sample
person photos and adapt verification thresholds, otherwise
false.

Success Response

Status code
200 OK

Content-Type
application/vnd.com.smilart.helios.av.config+json

Body

{
 "active": boolean
}

Properties

Property
Name

Value Type Description

active boolean Service activity status.

60

Error Responses

Incorrect request parameters

Status code: 400 Bad Request.

Request timeout

Status code: 408 Request Timeout.

Payload is too large

Status code: 413 Payload Too Large.

Unsupported payload type

Status code: 422 Unprocessable Entity.

Service is overloaded

Status code: 429 Too Many Requests.

61

RemoveAllPhotos

Removes all sampled photos.

Request

DELETE /av/photos

Request Body

Do not supply a request body with this method.

Success Response

Sampled photos deleted

Status code: 204 No Content.

Error Responses

Request timeout

Status code: 408 Request Timeout.

Service is overloaded

Status code: 429 Too Many Requests.

62

RemovePhotosByPerson

Removes all sampled photos of the person.

Request

DELETE /av/photos/persons/{personId}

Path Parameters

Parameter Name Value Type Description

personId string Identifier of the person.

Request Body

Do not supply a request body with this method.

Success Response

Sampled photos deleted

Status code: 204 No Content.

Error Responses

Request timeout

Status code: 408 Request Timeout.

Service is overloaded

Status code: 429 Too Many Requests.

63

RemovePhotosByCamera

Removes all sampled photos from the camera for every person.

Request

DELETE /av/photos/cameras/{cameraPid}

Path Parameters

Parameter Name Value Type Description

cameraPid string Identifier of the camera.

Request Body

Do not supply a request body with this method.

Success Response

Sampled photos deleted

Status code: 204 No Content.

Error Responses

Request timeout

Status code: 408 Request Timeout.

Service is overloaded

Status code: 429 Too Many Requests.

64

	Smilart Web API Guide
	Table of Contents
	Overview
	Common protocol description
	WebSockets heartbeat

	Root Endpoint
	Resources Summary
	Person Collection
	Person
	Person Photo Collection
	Person Photo
	Camera Collection
	Camera Info
	Camera MJPEG
	VCA Service
	Photo Booth Service
	Verification Service
	IPA Service
	Adaptive Verification Service

	Resources Reference
	Person Collection
	Person
	Person Photo Collection
	Person Photo
	Camera Collection
	Camera Info
	Camera MJPEG
	VCA Service
	Photo Booth Service
	Verification Service
	IPA Service
	Adaptive Verification Service

