Smilart

Smilart Phoenix API Reference

Table of Contents

Overview
Definition of the communication protocol
Router and supported transport protocols
Request
Response
Error’s handling
Client side errors
Server side errors
Implementation details of services
Common Notes
VCA API
Definition of the Subscribe.Response.Subscribed.destination
Person Management API
Features of requests for different databases
Photo Booth API
Definition of the Start.Request.destination
Verification API
Definition of the Subscribe.Response.Subscribed.destination
Definition of the Verify.Request.threshold_name
IPA API

BOR W W W W W W WNNDDNDNDNDDN R R R R, R

Overview

Smilart Phoenix version 8.3.0 is a soft-realtime reference implementation of the Smilart API
version 2.5.

As implementation of the Smilart API it has implementation details of the communication protocol
where it was proposed by specification of the Smilart API.

Definition of the communication protocol

Router and supported transport protocols

To transfer messages to the system and back, Phoenix uses Advanced Message Queuing Protocol
(AMQP). Each AMQP message must contain just one protobuf message.

RabbitMQ is AMQP message broker, which is usualy installed on the server with Platform. The
defaut port, which RabbitMQ listens, is 5672.

All necessary parameters to connect to RabbitMQ are:

port: 5672
e virtual host: /

* default username: guest

default password: guest

A client sends requests to AMQP exchange which is set in API configuration.
Default exchange name is platform-api. Routing key must match API service name which processes
the request. Message body is a serialized request to certain API service.

Request

Each message must contain set of the properties:

* reply_to— queue name to send response to.

 correlation_id —arbitrary string, response to this request must contain the same value in
correlation_id property; UUID can be used as a value.

» user_id — proper name of AMQP user who sends the request; messages with invalid user_id
value will be dropped by the AMQP broker.

API sends a response directly to the queue which contains in reply_to property of the request.

Response
Every response AMQP message contains:

 correlation_id —string that matches to correlation_id value of corresponding request. If no

correlation_id is provided, error response message also contains no correlation_id.
* headers.status — string representation of the returned code of operation.

* headers.content-type —optional string representation of the content type of the message
(application/vnd.com.smilart/api.router/text/plain is used for common API errors, service
level content types are service specific).

* body — binary payload of the message, corresponds to content type.
Normal API response has “200 OK” status. The serialized message can contain successful or

erroneous outcomes, a client should parse the message and make a decision on operation status
itself.

Error’s handling

Every request to Smilart API may fail due to client or server malfunction.

So, instead of expected message of succeeded request processing, client may receive plain text
message (content type=application/vnd.com.smilart/api.router/text/plain) with error with one of
the following status:

Client side errors

Status Possible causes Proposed client’s actions

400 BAD REQUEST Invalid properties in request Check the properties.
message.

401 UNAUTHORIZED user_id AMQP property value is Fill user_id property correctly.
not set.

Server side errors

Status Possible causes Proposed client’s actions

503 SERVICE IS UNAVAILABLE Request couldn’t be executed Try to resubmit request later.
due to absence of required API
service.

500 INTERNAL ERROR Request couldn’t be executed Contact tech support.
due to unexpected malfunction.

Implementation details of services

Common Notes

 All services distribute all images/photos to clients only in JPEG format.

VCA API

Definition of the Subscribe.Response.Subscribed.destination
Defines destination as string of the following format /exchange/<name>/<routing key> where:

* <name>—name of the AMQP Exchange where events will be sent.
» <routing key>—routing key of sent messages.

» For events publishing will be used the same RabbitMQ server that was used for router.

Person Management API

» Supports only JPEG and PNG images as input source.

» Supports only binary source payload.

Features of requests for different databases

* mongo:

> KeepPersons and RemovePersons requests do not have the atomicity property.
* mnesia, memory:

o storage has a limit of 2 GB for 32-bit machines.
* memory:

o storage is not durable.

Photo Booth API

Definition of the Start.Request.destination

Defines destination as string of the following format /queue/<queue name> where:

» <queue name>—name of the AMQP Queue where events will be sent. Client should create
consumer from that queue before send of Start request.

* For events publishing will be used the same RabbitMQ server that was used for router.

Verification API

Definition of the Subscribe.Response.Subscribed.destination
Defines destination as string of the following format /exchange/<name>/<routing key> where:

* <name>—name of the AMQP Exchange where events will be sent.
» <routing key>—routing key of sent messages.

» For events publishing will be used the same RabbitMQ server that was used for router.

https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://en.wikipedia.org/wiki/Durability_(database_systems)

Definition of the Verify.Request.threshold_name

Phoenix provides the following list of predefined threshold names from highest to lowest:
1. UltraHigh;

2. High;

3. Normal (recommended);

4. Low;

5. Ultralow.

Going from highest to lowest the probability to verify person increasing but the probability to
falsely accept the wrong person is increasing accordingly.

Besides mentioned names there is capability to use custom threshold names defined in Phoenix
customization file on server.

IPA API

» Supports only JPEG and PNG images as input source.

» Supports only binary source payload.

	Smilart Phoenix API Reference
	Table of Contents
	Overview
	Definition of the communication protocol
	Router and supported transport protocols
	Request
	Response
	Error’s handling
	Client side errors
	Server side errors

	Implementation details of services
	Common Notes
	VCA API
	Definition of the Subscribe.Response.Subscribed.destination

	Person Management API
	Features of requests for different databases

	Photo Booth API
	Definition of the Start.Request.destination

	Verification API
	Definition of the Subscribe.Response.Subscribed.destination
	Definition of the Verify.Request.threshold_name

	IPA API

